FEATURES
• High Output Power: $P_{1\text{dB}} = 41.5\text{dBm}$ (Typ.)
• High Gain: $G_{1\text{dB}} = 9.5\text{dB}$ (Typ.)
• High PAE: $\eta_{\text{add}} = 38\%$ (Typ.)
• Low $\text{IM}_3 = -46\text{dBc}@P_o = 30.5\text{dBm}$
• Broad Band: $5.3 \sim 5.9\text{GHz}$
• Impedance Matched $Z_{\text{in}}/Z_{\text{out}} = 50\Omega$

DESCRIPTION
The FLM5359-12F is a power GaAs FET that is internally matched for standard communication bands to provide optimum power and gain in a 50 ohm system.

Eudyna's stringent Quality Assurance Program assures the highest reliability and consistent performance.

ABSOLUTE MAXIMUM RATING (Ambient Temperature $T_a=25^\circ\text{C}$)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Condition</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-Source Voltage</td>
<td>V_{DS}</td>
<td></td>
<td>15</td>
<td>V</td>
</tr>
<tr>
<td>Gate-Source Voltage</td>
<td>V_{GS}</td>
<td></td>
<td>-5</td>
<td>V</td>
</tr>
<tr>
<td>Total Power Dissipation</td>
<td>P_T</td>
<td>$T_c = 25^\circ\text{C}$</td>
<td>57.6</td>
<td>W</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_{stg}</td>
<td></td>
<td>-65 to +175</td>
<td>°C</td>
</tr>
<tr>
<td>Channel Temperature</td>
<td>T_{ch}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Fujitsu recommends the following conditions for the reliable operation of GaAs FETs:
1. The drain-source operating voltage (V_{DS}) should not exceed 10 volts.
2. The forward and reverse gate currents should not exceed 32.0 and -5.6 mA respectively with gate resistance of 50Ω.

ELECTRICAL CHARACTERISTICS (Ambient Temperature $T_a=25^\circ\text{C}$)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Limit</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturated Drain Current</td>
<td>I_{DSS}</td>
<td>$V_{DS} = 5V$, $V_{GS} = 0V$</td>
<td>-</td>
<td>5800</td>
<td>8700</td>
<td>mA</td>
</tr>
<tr>
<td>Transconductance</td>
<td>g_m</td>
<td>$V_{DS} = 5V$, $I_{DS} = 3400\text{mA}$</td>
<td>-</td>
<td>2900</td>
<td>-</td>
<td>mS</td>
</tr>
<tr>
<td>Pinch-off Voltage</td>
<td>V_p</td>
<td>$V_{DS} = 5V$, $I_{DS} = 300\text{mA}$</td>
<td>-1.0</td>
<td>-2.0</td>
<td>-3.5</td>
<td>V</td>
</tr>
<tr>
<td>Gate Source Breakdown Voltage</td>
<td>V_{GSO}</td>
<td>$I_{GS} = -300\mu\text{A}$</td>
<td>-5.0</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Output Power at 1dB G.C.P.</td>
<td>$P_{1\text{dB}}$</td>
<td>$V_{DS} = 10V$, $I_{DS} = 0.55I_{DSS}$ (Typ.), $f = 5.3 \sim 5.9\text{GHz}$, $Z_s = Z_L = 50\Omega$</td>
<td>40.5</td>
<td>41.5</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>Power Gain at 1dB G.C.P.</td>
<td>$G_{1\text{dB}}$</td>
<td>-</td>
<td>8.5</td>
<td>9.5</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>Drain Current</td>
<td>I_{dsr}</td>
<td>-</td>
<td>3250</td>
<td>3800</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Power-added Efficiency</td>
<td>η_{add}</td>
<td>-</td>
<td>38</td>
<td>-</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Gain Flatness</td>
<td>ΔG</td>
<td>-</td>
<td>-</td>
<td>±0.6</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>3rd Order Intermodulation Distortion</td>
<td>IM_3</td>
<td>$f = 5.9\text{GHz}$, $\Delta f = 10\text{MHz}$ 2-Tone Test $P_{\text{out}} = 30.5\text{dBm}$ S.C.L.</td>
<td>-44</td>
<td>-46</td>
<td>-</td>
<td>dBc</td>
</tr>
<tr>
<td>Thermal Resistance</td>
<td>R_{th}</td>
<td>Channel to Case</td>
<td>-2.3</td>
<td>2.6</td>
<td>°C/W</td>
<td></td>
</tr>
<tr>
<td>Channel Temperature Rise</td>
<td>ΔT_{ch}</td>
<td>$10V \times I_{\text{dsr}} \times R_{\text{th}}$</td>
<td>-</td>
<td>-</td>
<td>80</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

CASE STYLE: IK

G.C.P.: Gain Compression Point, S.C.L.: Single Carrier Level
FLM5359-12F
C-Band Internally Matched FET

POWER DERATING CURVE

- Total Power Dissipation (W) vs. Case Temperature (°C)

OUTPUT POWER & IM3 vs. INPUT POWER

- **VDS=10V**
 - $f_1 = 5.9$ GHz
 - $f_2 = 5.91$ GHz
 - 2-tone test

- Output Power (S.C.L.) (dBm) vs. Input Power (S.C.L.) (dBm)
 - IM3 (dBc)

OUTPUT POWER vs. FREQUENCY

- VDS=10V
 - P_{1dB}
 - P_{out}
 - P_{in}=33dBm
 - 3 dBm
 - 29dBm
 - 27dBm

- Output Power (dBm) vs. Frequency (GHz)

OUTPUT POWER vs. INPUT POWER

- VDS=10V
 - $f = 5.6$ GHz
 - P_{out}
 - η_{add}

- Output Power (dBm) vs. Input Power (dBm)

- Efficiency (%) vs. Input Power (dBm)
S-Parameters

V_{DS} = 10V, I_{DS} = 3400mA

<table>
<thead>
<tr>
<th>FREQUENCY (MHZ)</th>
<th>S11 MAG</th>
<th>S11 ANG</th>
<th>S12 MAG</th>
<th>S12 ANG</th>
<th>S21 MAG</th>
<th>S21 ANG</th>
<th>S22 MAG</th>
<th>S22 ANG</th>
</tr>
</thead>
<tbody>
<tr>
<td>5100</td>
<td>.722</td>
<td>-100.8</td>
<td>2.867</td>
<td>43.0</td>
<td>.027</td>
<td>21.1</td>
<td>.434</td>
<td>-91.7</td>
</tr>
<tr>
<td>5200</td>
<td>.670</td>
<td>-118.0</td>
<td>3.100</td>
<td>25.4</td>
<td>.031</td>
<td>-4.1</td>
<td>.401</td>
<td>-113.1</td>
</tr>
<tr>
<td>5300</td>
<td>.608</td>
<td>-137.4</td>
<td>3.299</td>
<td>7.2</td>
<td>.038</td>
<td>-26.3</td>
<td>.372</td>
<td>-136.6</td>
</tr>
<tr>
<td>5400</td>
<td>.543</td>
<td>-159.6</td>
<td>3.429</td>
<td>-11.6</td>
<td>.044</td>
<td>-49.2</td>
<td>.352</td>
<td>-161.0</td>
</tr>
<tr>
<td>5500</td>
<td>.485</td>
<td>175.3</td>
<td>3.497</td>
<td>-30.0</td>
<td>.050</td>
<td>-71.0</td>
<td>.343</td>
<td>175.8</td>
</tr>
<tr>
<td>5600</td>
<td>.448</td>
<td>148.0</td>
<td>3.502</td>
<td>-48.4</td>
<td>.054</td>
<td>-91.6</td>
<td>.344</td>
<td>155.0</td>
</tr>
<tr>
<td>5700</td>
<td>.441</td>
<td>120.7</td>
<td>3.449</td>
<td>-66.1</td>
<td>.057</td>
<td>-110.3</td>
<td>.344</td>
<td>137.0</td>
</tr>
<tr>
<td>5800</td>
<td>.458</td>
<td>96.4</td>
<td>3.357</td>
<td>-83.2</td>
<td>.060</td>
<td>-128.1</td>
<td>.346</td>
<td>121.8</td>
</tr>
<tr>
<td>5900</td>
<td>.485</td>
<td>76.0</td>
<td>3.250</td>
<td>-99.5</td>
<td>.063</td>
<td>-144.4</td>
<td>.350</td>
<td>108.2</td>
</tr>
<tr>
<td>6000</td>
<td>.513</td>
<td>59.3</td>
<td>3.141</td>
<td>-114.9</td>
<td>.064</td>
<td>-159.7</td>
<td>.357</td>
<td>96.8</td>
</tr>
<tr>
<td>6100</td>
<td>.536</td>
<td>45.2</td>
<td>3.053</td>
<td>-129.7</td>
<td>.066</td>
<td>-174.1</td>
<td>.365</td>
<td>86.8</td>
</tr>
</tbody>
</table>
FLM5359-12F

C-Band Internally Matched FET

Case Style "IK"

Metal-Ceramic Hermetic Package

For further information please contact:

Eudyna Devices USA Inc.
2355 Zanker Rd.
San Jose, CA 95131-1138, U.S.A.
TEL: (408) 232-9500
FAX: (408) 482-9111
www.us.eudyna.com

Eudyna Devices Europe Ltd.
Network House
Norreys Drive
Maidenhead, Berkshire SL6 4FJ
United Kingdom
TEL: +44 (0) 1628 504800
FAX: +44 (0) 1628 504888

Eudyna Devices Asia Pte Ltd.
Hong Kong Branch
Rm. 1101, Ocean Centre, 5 Canton Rd.
Tsim Sha Tsui, Kowloon, Hong Kong
TEL: +852-2377-0227
FAX: +852-2377-3921

Eudyna Devices Inc.
Sales Division
1, Kanai-cho, Saka-ku
Yokohama, 244-0845, Japan
TEL: +81-45-853-8156
FAX: +81-45-853-8170

CAUTION

Eudyna Devices Inc. products contain gallium arsenide (GaAs) which can be hazardous to the human body and the environment. For safety, observe the following procedures:

- Do not put this product into the mouth.
- Do not alter the form of this product into a gas, powder, or liquid through burning, crushing, or chemical processing as these by-products are dangerous to the human body if inhaled, ingested, or swallowed.
- Observe government laws and company regulations when discarding this product. This product must be discarded in accordance with methods specified by applicable hazardous waste procedures.

Eudyna Devices Inc. reserves the right to change products and specifications without notice. The information does not convey any license under rights of Eudyna Devices Inc. or others.

© 2004 Eudyna Devices USA Inc.
Printed in U.S.A.